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1
I N T R O D U C T I O N

1.1 the importance of tensor networks and matrix product states

Quantum many-body systems, in particular strongly correlated systems within con-
densed matter physics, are of extraordinary importance for modern physics: They can
describe a variety of systems with highly interesting properties, e.g. spin glasses [16],
frustrated magnets [18] or superconductors [3], just to name a few. The huge number
of interacting degrees of freedom even for simple models of these systems is posing
a challenge to both, analytical and numerical solution approaches. The dimension of
the underlying Hilbert space grows exponentially with the number of particles in a
system. If it can be described by differential systems on a symplectic manifold, and
if there are as many constant of motion as degrees of freedom one is able to solve it
analytically and the system is called "integrable" [5]. But still the large majority of such
models are not integrable, and therefore have to be treated with numerical techniques.
As numerical approaches to determine the eigenvalues and eigenvectors of a Hamil-
tonian scale disproportionate to the number of particles or total system length, only
small systems could be analysed with the computing power typically available today
using "brute force" diagonalisation methods. Fortunately, most physical systems can
be sufficiently described by focusing on local interactions, which locate the important
physical ground states in a very small portion of the huge Hilbert space.

For such a system, the matrix product state (MPS) formalism turns out to be a mighty
variational approach to rebuild the ground states at zero temperature with a small
amount of processing power. It is equivalent to a parametrisation of a more compact
submanifold of the Hilbert space, describing only the sectors with reduced entangle-
ment between the system’s subparts by construction. The interesting states are those
with low energy portions of the spectrum and a few excited thermal states. It has
been proven [6], that ground and thermal states of Hamiltonians with local inter-
actions obey the area law for entanglement, which immediately connects the low en-
ergy states to those with low entanglement. The intense interest in MPS in the last
few years is based on the power of the density matrix renormalisation group (DMRG)
method, which has been developed by S. White et al. in the 1990’s [20].

The main intention of this thesis is to provide an introduction into tensor networks and
the reformulated DMRG as part of the MPS formalism under a quantum information
perspective. A DMRG programme will be implemented and tested for the Ising and
bilinear-biquadratic (BLBQ) Heisenberg model by a comparison of numerical results to
analytical solutions - as far as they exist.
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2
T H E O R E T I C A L C O N C E P T S

To introduce in the formalism of MPS, we will proceed as follows: Basics of quantum
mechanics will be reviewed in order to become familiar with the definition of ent-
anglement. The next section gives an insight in how to quantify entanglement, i.e.
how to measure entanglement in a quantum mechanical system. After that, the basics
of tensor networks will be provided in order to introduce the graphical representation
for MPS. A short section about the Affleck, Lieb, Kennedy and Tasaki (AKLT) model
is sufficient to understand a simple MPS. The main intention of the next part is to
provide the basics for the implementation of a DMRG algorithm, reformulated in the
MPS language. A few lines about measuring observables with the MPS obtained by the
DMRG programme is a crossover to the demonstration chapter.

2.1 review of quantum mechanics

In quantum mechanics, information is stored in the system’s wave function |ψ〉 ε H.
H is called Hilbert space and |ψ〉 is a vector with complex coefficients. An example is
given by a two level system (e.g. spin-1/2),

|ψ〉 = α |↑〉+ β |↓〉 , where {|↑〉 , |↓〉} is a basis of H ⊆ C2 . (2.1)

This is called a ket. One also defines a bra via 〈ψ| = α∗ 〈↑| + β∗ 〈↓|. The two level
systems define a qu(antum)bit, if |↑〉 ≡ |0〉 and |↓〉 ≡ |1〉. Then the state |ψ〉 = α |0〉+
β |1〉 is a superposition of 0’s and 1’s. The scalar product of two states is defined

|ψ〉 = α |0〉+ β |1〉 , |φ〉 = α̃ |0〉+ β̃ |1〉
⇒ 〈φ |ψ〉 = α̃∗ · α + β̃∗ · β .

(2.2)

Physical states are normalised 〈ψ |ψ〉 = |α|2 + |β|2 = 1. Given a quantum state |x〉, the
probability P of the system |ψ〉 being in the state |x〉 is given by P(|x〉) = |〈x |ψ〉|2. If
one is making a measurement of a defined state, the whole system will collapse, e.g.

|ψ〉 = α |0〉+ β |1〉
measuring σz−−−−−−−→

leads to
+1⇔ |ψ〉 = |0〉 .

(2.3)

A collapse is a non-unitary operation. Physical operations (apart from measurements)
are represented by unitary operators.

U is unitary ⇔ UU† = U†U = 1

U† ≡
(

UT
)∗

= (U∗)T (2.4)
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2.1 review of quantum mechanics

The well-known Pauli matrices are a good example for unitary operators:

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (2.5)

Pauli matrices have the following properties:

{
σi, σj

}
= 2δij ,

[
σi, σj

]
= 2i

3

∑
k=1

εijkσk . (2.6)

Unitary operations preserve the norm of a state. For |ψ′〉 = U |ψ〉 ,
〈
ψ′
∣∣ψ′
〉
= 〈Uψ |Uψ〉 = 〈ψ|U†U |ψ〉 = 〈ψ |ψ〉 . (2.7)

This implicitly means, that the probability is always conserved (∑ Pi = 1). Composite
systems are described by tensor products of Hilbert spaces

|ψ1〉 ε H1, |ψ2〉 ε H2, composite system |ψ3〉 ε H3 = H1 ⊗H2 . (2.8)

In terms of basis states, e.g. qubits

{|0〉1 , |1〉1} ε H1 {|0〉1 ⊗ |0〉2 , |1〉1 ⊗ |1〉2 , |0〉1 ⊗ |1〉2 , |1〉1 ⊗ |0〉2} ε H3 ,
{|0〉2 , |1〉2} ε H2

dim (H1) = dim (H2) = 2, dim (H3) = dim (H1) · dim (H2) = 4 .
(2.9)

Therefore, some possible states for |ψ3〉 are:

|ψ3〉 =





|0〉1 ⊗ |1〉2 ,
1√
2
(|0〉1 ⊗ |0〉2 + |0〉1 ⊗ |1〉2) ≡ |0〉1 |+〉2 , |+〉 = 1√

2
(|0〉+ |1〉) ,

1
2 (|0〉1 ⊗ |0〉2 − |0〉1 ⊗ |1〉2 − |1〉1 ⊗ |0〉2 + |1〉1 ⊗ |1〉2) ,
1√
2
(|0〉1 ⊗ |0〉2 + |1〉1 ⊗ |1〉2) .

(2.10)

Whenever a state is not described by a product of states of the corresponding subsys-
tems, the system is called entangled. Otherwise it is called separable.

|ψ〉 ε H1 ⊗H2 is entangled iff.

@ |ψi〉 ε Hi ⇒ |ψ〉 = |ψ1〉 ⊗ |ψ2〉
(2.11)

Examples for separable and entangled states are:

|ψ〉 =





|0, 0〉 → separable ,
1
2 (|0, 0〉+ |0, 1〉+ |1, 0〉+ |1, 1〉) = |+,+〉 → separable ,
1√
2
(|0, 0〉+ |1, 1〉) ≡ |Φ+〉 → entangled ,

1√
2
(|1, 0〉 − |0, 1〉) ≡ |Ψ−〉 → entangled .

(2.12)
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2.2 entanglement quantification

Entangled states can be understood as a distance independent correlation, which is
called the Einstein-Podolsky-Rosen (EPR) paradox. To illustrate this idea, imagine one
creates a |ψ−〉 state, sends one qubit to Darmstadt and keeps the other in Mainz.
A measurement of spin-"0" in Mainz will result in an immediate collapse1 of the qubit
in Darmstadt to |1〉. Entanglement is a non-local property of |ψ〉. Therefore, it does not
change under local unitary operators, e.g. E(|ψ1,2〉) = E(U1 ⊗U2 |ψ1,2〉), where U1, U2

are unitary operators [15].

Note
Entanglement, as in the above definition, appears to be a bipartite property. But it
can also be multipartite, e.g. one can have |ψ〉 ε H1,2,3 = H1 ⊗H2 ⊗H3 with |ψ〉 6=
|ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉. To exclude pairwise entanglement, one should also demand that
|ψ〉 6= {|ψ1,2〉 ⊗ |ψ3〉 , |ψ1〉 ⊗ |ψ2,3〉}. Therefore, entanglement properties of a quantum
state may be very subtle, and a full classification of entangled states is only possible
in particular cases.

2.2 entanglement quantification

As it turns out [9], the van Neumann entropy is a "good" entanglement quantity for
pure bipartite systems. In order to understand the definition given at the end of this
section, the introduction of a few mathematical tools is necessary.

Theorem: Singular Value Decomposition (SVD)2

For every matrix M of dimensions (dA × dB) exists a singular value decomposition
(SVD) such that

M = UΛV† , (2.13)

with the following properties:

• U has dimensions (dA×min(dA, dB)) and orthonormal columns. U†U = 1 (if
dA ≤ dB) and UU† = 1

• Λ has dimensions (min(dA, dB)×min(dA, dB)) and is diagonal with non-negative
entries λα. The number of non-zero singular values m is the so called Schmidt
rank of M.

• V† has dimensions (min(dA, dB)×dB) and orthonormal rows.
V†V = 1 (if dA ≥ dB) and VV† = 1 .

Theorem: Schmidt Decomposition
Let

|ψA,B〉 ε HA ⊗HB, |ψA,B〉 = ∑
i,j

ψi,j |i〉A |j〉B . (2.14)

1 But there is no information transmitted, if one does not allow a classical bit communicating the outcome
in Mainz to the scientist in Darmstadt - no information is transmitted for free!

2 A proof can be found in [11].
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2.2 entanglement quantification

There exists always a so called Schmidt decomposition

|ψA,B〉 =
m

∑
α

λα |α〉A |α〉B , (2.15)

with m ≤ min (dim (HA) , dim (HB)) and 〈α | α′〉A = 〈α | α′〉B = δαα′ . This means there
is a orthonomal basis of HA and HB, which is a direct consequence of the singular
value decomposition. A proof can be found in chapter B.1.

1. |α〉A, |α〉B are called Schmidt vectors.

2. m = 1⇔ |ψA,B〉 is separable.

3. m is called Schmidt rank and provides a first measure of entanglement. The larger
m is, the more entangled is the state.

The entropy can be measured by decomposition of the state either via SVD to read
out the singular values, which directly refer to the entanglement of the bond between
the two subsystems, or equivalently by calculating the reduced density matrix. The
reduced density matrix of a state with common orthonormal basis |ψ〉 of two systems
A and B is defined as the partial trace of the common density matrix $AB = $A ⊗ $B ,

$A/B ≡ trB/A ($AB) . (2.16)

This can be simplified using the Schmidt decomposition to

$A =
r

∑
α=1

λ2
α |α〉A 〈α|A , $B =

r

∑
α=1

λ2
α |α〉B 〈α|B . (2.17)

The von Neumann entropy is then computed from reduced density matrix $A/B

SA/B ≡ −tr ($A/B log($A/B))

= −
r

∑
α

λ2
α log(λ2

α) .
(2.18)

If we consider the singlet state of two spin-1/2, |ψ−〉 = 1√
2
(|↑↓〉 − |↓↑〉), the total state

can be written in matrix form

|ψ〉 = ∑
a,b

Σa,b |ab〉 a, b ε {↑, ↓} , with

Σ =
1√
2

(
0 1

−1 0

)
.

(2.19)

A readout of the entanglement spectrum is obtainable via SVD

Σ = UΛV† =
1√
2

(
0 1

1 0

)(
1 0

0 1

)(
−1 0

0 1

)

⇒ −Λ2 log
(
Λ2) =

(
0.5 0

0 0.5

)

⇒ S = +1 ,

(2.20)
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2.3 tensor networks and tensor network diagrams

which is the maximum entanglement entropy for this system. For a separable state,
e.g. |ψ〉 = 1√

4
(|↑〉+ |↓〉)2, the expression becomes

Σ =
1√
4

(
1 1

1 1

)
= UΛV† =

1√
4

(
−1 −1

−1 1

)(
1 0

0 0

)(
−1 −1

−1 1

)
, (2.21)

which yields a von Neumann entropy S = 0.

2.3 tensor networks and tensor network diagrams

A tensor is a composed system of complex numbers in multidimensional arrays. Its
rank is defined as the number of indices. Hence, a single number x is a tensor of rank
zero, a vector xα of rank one, the Kronecker delta δil of rank two, and the Levi-Civita
tensor εijk of rank three. To introduce tensor networks and tensor network contractions, it
is usual to define a graphical representation for tensors (see Fig. 1).

Figure 1: Examples for a graphical representation of tensors. From left to right: Scalar, vector, matrix,
rank-3 tensor. Each index is represented by a tensor leg.

Tensor contractions are sums over one or more equal indices of different tensors.

Cαγ =
D

∑
β=1

AαβBβγ (2.22)

Eq. 2.22 is an example for a contraction of index β. The non-contracted indices α and
γ are called open indices. These conventions yield a graphical representation for con-
tractions. Hence figure 2 is a matrix multiplication in equivalence to Eq. 2.22.

Figure 2: Graphical representation of contraction 2.22.

This notation makes a complex contraction visual and points out some properties that
are hidden in the huge amount of indices, e.g. the cyclic property of a trace of a matrix
product (see Fig. 3). Consider the matrix multiplication of Eq. 2.22 and assume A and
B are (m×m) matrices, the total number of operations for this contraction is O(m3).
This amount of operations cannot be reduced using naive approaches for matrix mul-
tiplications3, but in the case of more complex tensor contractions, it is important to
think about the sequential arrangement. For example, the result of both contractions

3 The Strassen algorithm reduces O(mlog2(8))→ O(mlog2(7)).
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2.4 the aklt matrix product state

A

B

C

D

E

F

= tr (ABCDEF) = AαβBβγCγδDδεEεζ Fζα (2.23)

Figure 3: Trace of a matrix product in graphical and analytical notation with sum convention.

in Fig. 4 is the same, but they need a different number of operations. This is essential
for programming the contraction in order to find the optimised computation time [10].

B̃γ1γ2

β1β2

Dγ1γ2

C̃γ2

β1α1

Aγ1

β1α1

Cβ1β2

Bγ2

α1β2α1
γ1 γ2

β2β1

Sequence 1

Sequence 2

∑

β2

∑

α1

∑

β1α1

∑

β1β2

Figure 4: Assume that each leg has dimension m. Green contractions include O(m4) operations and
the red one O(m5). Therefore, sequence 1 is the better choice.

2.4 the aklt matrix product state

For a short review about the principles and the physical understanding of MPS, a very
nice example can be given by the valence-bond-states as part of the AKLT model.
Consider the Hamiltonian

H =
B

∑
l=1

α(~Sl~Sl+1) + β(~Sl~Sl+1)
2 and α = 1 , β =

1
3

(2.24)

for a 1D spin-1 chain with length L. B = L− 1 for an open boundary condition (OBC)
and B = L for a periodic boundary condition (PBC), where L + 1 ≡ 1. Each particle
may occupy one of three orthonormal states |σ〉 ε {|+〉 , |0〉 , |−〉}. The spin operators
can be written component by component ~Sl = (Sx

l , Sy
l , Sz

l )
T ,

Sj
l = 1⊗ 1⊗ . . .︸ ︷︷ ︸

l−1

⊗Sj ⊗ 1 . . .⊗ 1︸ ︷︷ ︸
L−l

j ε {x, y, z} , (2.25)
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2.4 the aklt matrix product state

with their explicit forms

Sx =
1√
2




0 1 0

1 0 1

0 1 0


 , Sy =

1√
2




0 −i 0

i 0 −i

0 i 0


 , Sz =




1 0 0

0 0 0

0 0 −1


 . (2.26)

Each term of the Hamiltonian in Eq. 2.24 has the form

Hobc, l = (~SA · ~SB) +
1
3
(~SA · ~SB)

2 , (2.27)

which can be simplified to

SASB =
1
2
(
(SA + SB)

2 − (S2
A + S2

B)
)
=

1
2
(
S2

tot − 4
)

=
1
2
·





0− 4 stot = 0

2− 4 stot = 1

6− 4 stot = 2

⇒ Hobc, l = −
2
3
(P0 + P1) +

4
3

P2 = −2
3

1 + 2P2 ,

(2.28)

with the spin projection operators Ps. For OBC, the ground state of Hl is four-fold
degenerate with the states

|1,+1〉 = 1√
2

(
|+〉l |0〉l+1 − |0〉l |+〉l+1

)
,

|1, 0〉 = 1√
2

(
|+〉l |−〉l+1 − |−〉l |+〉l+1

)
,

|1,−1〉 = 1√
2

(
|−〉l |0〉l+1 − |0〉l |−〉l+1

)
,

|0, 0〉 = 1√
3

(
|+〉l |−〉l+1 + |−〉l |+〉l+1 − |0〉l |0〉l+1

)
.

(2.29)

The three triplet states are given by

|+〉 = |↑↑〉 , |0〉 = 1√
2
(|↑↓〉+ |↓↑〉) , |−〉 = |↓↓〉 . (2.30)

To understand the formalism and structure of MPS, the introduction of a mapping will
lead to a simple non-trivial tensor network as a solution for the ground state.

The ground state of the Hamiltonian in Eq. 2.24 according to Eq. 2.29 should con-
sist of links which never yield a total spin-2 state. Such a state can be obtained by a
spin-1 chain with two symmetrised spin-1/2 subcomponents projected onto a triplet
state at each lattice point. All neighbouring spin-1/2 pairs of adjacent spin-1 systems
contract to a singlet state with spin-0.

8



2.4 the aklt matrix product state

. . .

Figure 5: AKLT state for OBC. The grey tensors with a leg at the bottom represents a contraction of the
two (blue) virtual spin-1/2 to a physical spin-1. The zigzag line is a symbol for singlet bounds between
neighbouring spin-1/2. By construction, the border spin-1/2 are free.

For PBC, this ground state is unique with singlets for each neighbouring spin-1/2 pair.
The OBC ground state has a four-fold degeneracy given by the two unbounded spin-
1/2 at the borders, which are able to form a singlet and the so called Kennedy triplet.

Let |a〉 = |a1 . . . aL〉 , |b〉 = |b1 . . . bL〉 be the representation of the left and right spin-
1/2 on each point. The state |ψ〉 can be written in terms of its subcomponents

|ψ〉 = ∑
a

∑
b

cab |ab〉 . (2.31)

One may consider the bonding condition
∣∣∣Σ[i]

〉
= ∑

bi ai+1

Σbiai+1 |biai+1〉 (2.32)

and rewrite the four constants Σbiai+1 as a 2× 2 matrix

Σ =


 0 1√

2

− 1√
2

0


 . (2.33)

One is now able to write the total state with singlet-bonded spin-1/2 particles

|ψΣ〉 = ∑
a

∑
b

Σb1a2 Σb2a3 . . . ΣbL−1aL |ab〉 . (2.34)

The state is given by a product of matrices, where the local states are composed of
its two constituents. To include the projection to physical spin-1, one has to define a
mapping operator Mσ

ab, which acts on |σ〉 〈ab|. In matrix form, this yields

M+ =

(
1 0

0 0

)
, M0 =


 0 1√

2
1√
2

0


 , M− =

(
0 0

0 1

)
. (2.35)

Therefore the total state can be expressed by

|ψ〉 = ∑
σ

∑
a,b

Mσ1
a1b1

Σb1a2 Mσ2
a2b2

Σb2a3 . . . ΣbL−1aL MσL
aLbL
|σ〉 , (2.36)

or equivalently by the AKLT matrices Aσ ∝ MσΣ, normalised in the thermodynamic
limit (system size L→ ∞)

A+ =


0

√
2
3

0 0


 , A0 =


−

√
1
3 0

0
√

1
3


 , A− =


 0 0

−
√

2
3 0


 . (2.37)
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2.4 the aklt matrix product state

The explicit form of a wave function

|ψ〉 = ∑
σ1 ...σL

A[1]
σ1 A[2]

σ2 . . . A[L−1]
σL−1 A[L]

σL |σ1σ2 . . . σL−1σL〉 , (2.38)

with rank-3 tensors A[i] of - in general - site-dependent dimensions (mi ×mi+1× di) is
called a 1D matrix product state (MPS). For the AKLT model, the matrices A[i]

σi are, except
for the borders, all equal and of dimension ((mi = 2)× (mi+1 = 2)× (di = 3)). Hence
the total expression becomes simpler. To conclude in a short summary: One is able to
rewrite the ground state as a MPS by introduction of maximally entangled subcompo-
nents. Moreover, the auxiliary dimensions of the tensors are constant, even though the
Hilbert space grows exponentially with the system size.

Sequential Singular Value Decomposition

In fact, the MPS structure of Eq. 2.38 can be obtained for any arbitrary spin-1 state

|ψ〉 = ∑
σ1 ...σL

cσ1...σL |σ1 . . . σL〉 , (2.39)

with 3L coefficients cσ1 ...σL via sequential singular value decomposition (SSVD). The
main idea is represented graphically in Fig. 6 and consists of the following steps:

↓ SVD

↓ SVD

↓ SVD

...

Figure 6: Starting from Ψσ1,...,σL , the MPS can be gained via sequential reshaping, SVD and permutation
- if needed.
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2.5 matrix product operators

1. Write the 3L coefficients cσ1,...,σL in a tensor Ψσ1 ...σL of dimensions (3× 3 · · · × 3× 3︸ ︷︷ ︸
L

).

2. Reshape the tensor as a matrix Ψσ1 ...σL → Ψ̃σ1(σ2...σL).

3. A SVD of Ψ̃σ1(σ2 ...σL) yields

Ψ̃σ1(σ2 ...σL) =
r1

∑
α1=1

Uσ1α1 Λα1α1V†
α1(σ2 ...σL)

. (2.40)

4. Reshape Uσ1α1 into a tensor Uσ1
α1 ≡ Γσ1

α1 , reshape the matrix
Λα1α1V†

α1(σ2 ...σL)
→ Ṽ(α1σ2)(σ3 ...σL) and make another SVD to obtain

V(α1σ2)(σ3 ...σL) = U(α1σ2)α2
Λα2α2V†

α2(σ3 ...σL)
. (2.41)

5. Reshape U(αlσl+1)αl+1
→ Γσl+1

αlαl+1 and repeat the SVD with
Λαl+1αl+1V†

αl+1(σl+2 ...σL)
for l = 1 . . . (L− 2).

6. Reshape the matrix ΛαL−1αL−1V†
αL−1σL

→ ΓσL
αL−1 .

Note
Of course, at each step, the matrices U, Λ, V and Γ are different. Therefore, the
coefficients cσ1 ...σL are given by the contraction of L different Γ matrices

cσ1...σL = Γ[1]
σ1 Γ[2]

σ2 . . . Γ[L−1]
σL−1 Γ[L]

σL . (2.42)

A naive decomposition would yield a splitting into matrices with exponential in-
creasing dimensions. However, the SVD reveals that these dimensions can be signif-
icantly decreased due to the fact that information between two subsystems is limited.
In the case of the AKLT state, the Schmidt rank is even constant: m = 2. This agrees
with the construction of the exact solution we illustrated before, despite the matrices
obtained by SSVD are in general quite different from the A′s of Eq. 2.38. This has to
do with the so called gauge freedom of the tensors, a property that we will explain and
exploit later on to get convenient MPS forms (see chapter 2.6).

2.5 matrix product operators

Given a physical state in MPS form according to Eq. 2.42

〈σ |ψ〉 = Γ[1]
σ1 Γ[2]

σ2 . . . Γ[L−1]
σL−1 Γ[L]

σL , (2.43)

in order to calculate expectation values, it is numerically profitable to work with an
analogue representation for operators O

〈
σ
∣∣O
∣∣σ′
〉
= Ω[1]

σ1σ′1
Ω[2]

σ2σ′2
. . . Ω[L−1]

σL−1σ′L−1
Ω[L]

σLσ′L
. (2.44)
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2.5 matrix product operators

This is possible for any operator, because it can be written such that

O = ∑
σ1 ...σL

∑
σ′1 ...σ′L

c(σ1 ...σL)(σ′1 ...σ′L)
|σ〉

〈
σ′
∣∣ , (2.45)

and therefore be decomposed analogue to Fig. 6 via SSVD, but with two physical
indices σi, σ′i instead of only one. This means for the graphical notation, each tensor of
a matrix product operator (MPO) at site j is of rank-4 and the pictorial representation is
with two vertical lines - one for an ingoing quantum number and one for an outgoing
one. The final MPO then has two physical legs in vertical direction and two auxiliary
legs in horizontal direction (see Fig. 7). The border tensors can be written with dummy
indices, too.

. . . . . .

σj

σ′j

αj

βj

σ1

σ′1

σ2

σ′2

σ3

σ′3

σL−2

σ′L−2

σL−1

σ′L−1

σL

σ′L

Figure 7: MPO chain with L sites. Each tensor Ω
σjσ
′
j

αj ,β j
at site j has two physical indices σj, σ′j and two

auxiliary indices αj, β j.

Fortunately, for an operator expressed as sums of local operators (e.g. link model
Hamiltonian or magnetisation), it is possible to directly write down the MPO form.
To do so, reconsider the local block Ωσσ′ with its projector |σ〉 〈σ′| to obtain a local
operator Ω̂i = ∑σσ′ Ωσσ′ |σ〉 〈σ′| acting on the local quantum numbers σ and σ′. The
total operator becomes a composition of operators acting on different local Hilbert
spaces

O = Ω̂1Ω̂2 . . . Ω̂L . (2.46)

Hence, contractions of such operator-valued tensors results in a sum of tensor pro-
ducts of their corresponding operators. A simple example should explain the basic
principle of the form for the compact Hamiltonian. The 1D Ising Hamiltonian in a
transverse field with OBC is given by

HIsing = −
L

∑
i=1,j=1

JijSx
i Sx

j − Γ
L

∑
i=1

Sz
i . (2.47)

Sx/z = 1
2 σx/z are spin operators (in this thesis, h̄ = c0 = 1 for simplicity). In the

following, we assume this coupling to be constant for each particle pair: Jij = 0 for
j 6= i + 1, and Ji,i+1 = const. = J. Explicitly, the Hamiltonian takes the form

H =− JSx ⊗ Sx ⊗ 1 ⊗ 1⊗ . . . ⊗ 1− hSz ⊗ 1 ⊗ 1 ⊗ . . . ⊗ 1

− 1 ⊗ JSx ⊗ Sx ⊗ 1⊗ . . . ⊗ 1− 1 ⊗ hSz ⊗ 1 ⊗ . . . ⊗ 1

. . .

− 1 ⊗ 1 ⊗ . . .⊗ 1⊗ JSx ⊗ Sx − 1 ⊗ 1 ⊗ . . .⊗ hSz ⊗ 1

− 1 ⊗ 1 ⊗ . . .⊗ 1⊗ hSz .

(2.48)
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2.6 generation of canonical states

This Hamiltonian can be efficiently described using the tensors in Fig. 8, where the
assignment of the matrices to the vertical legs only allows for combinations appearing
in the above Hamiltonian.

else

1 1

1 2

1 3

12×2 =

(
1 0
0 1

)

JSx = J
2

(
0 1
1 0

)

ΓSz = Γ
2

(
1 0
0 −1

)

Sx = 1
2

(
0 1
1 0

)

12×2 =

(
1 0
0 1

)

0

2 3

3 3

Figure 8: Local tensors of the Ising model in MPO representation. Note that only terms that appear in
the sum can also appear in the final contraction due to the "else = 0" condition.

After a contraction of two local Hamiltonian tensors Ω
σiσ
′
i σjσ

′
j

αβ = ∑γ Ωσiσ
′
i

αγ Ω
σjσ
′
j

γβ , multipli-
cations that do not occur in the sum are forbidden by the last condition in Fig. 8. In
addition, except of an increase in matrix size, they leave the MPS form invariant:

O |ψ〉 = ∑
a,b,σ,σ′

Ωσ1σ′1
1,b1

Ωσ2σ′2
b1,b2

. . . Ω
σL−1σ′L−1
bL−1bL

ΩσLσ′L
bL,1 Γσ′1

1,a1
Γσ′2

a1,a2 . . . Γ
σ′L−1
aL−1,aL Γσ′L

aL,1 |σ〉

= ∑
a,b,σ,σ′

(
Ωσ1σ′1

1,b1
Γσ′1

1,a1

) (
Ωσ2σ′2

b1,b2
Γσ′2

a1,a2

)
. . .
(

Ω
σL−1σ′L−1
bL−1bL

Γ
σ′L−1
aL−1,aL

) (
ΩσLσ′L

bL,1 Γσ′L
aL,1

)
|σ〉

= ∑
σ

N[1]
σ1 N[2]

σ2 . . . N[L−1]
σL−1 N[L]

σL |σ〉 , with N[j]
σj =

(
N

[j]σj

(bjaj),(bj+1,aj+1)

)
.

(2.49)

For energy calculations this form is really comfortable, because one does not need
any book-keeping of different contributions to the energy but has all together in a
self-similar notation.

2.6 generation of canonical states

For open boundary conditions, it is sufficient to construct a MPS which provides or-
thogonality, i.e. 〈ψ |ψ〉 = 1. This may be obtained by the gauge property of MPS. Due to
the laws for matrix multiplication, one is free to add an identity between two tensors,
e.g.

1 = QQ† , (2.50)

which transforms the MPS into a different appearance. Given an arbitrary MPS

|ψ〉 = ∑
σ1σ2σ3 ...

∑
a1a2a3...

Mσ1
1,a1

Mσ2
a1,a2

Mσ3
a2,a3

. . . |σ1σ2σ3 . . . 〉 , (2.51)

13



2.6 generation of canonical states

each tensor Mσi can be transformed into M̃σi = QMσi Q† without changing the resul-
ting contraction, which can be easily shown.

|ψ̃〉 = ∑
σ1σ2σ3 ...

∑
a1a2a3...

M̃σ1
1,a1

M̃σ2
a1,a2

M̃σ3
a2,a3

. . . |σ1σ2σ3 . . . 〉

= ∑
a b σ

(Mσ1
1,b1

Q†
b1,a1

)(Qa1,b2 Mσ2
b2,b3

Q†
b3,a2

)(Qa2,b4 Mσ3
b4,b5

Q†
b5,a3

) . . . |σ〉

= ∑
σ1σ2σ3 ...

∑
a1a2a3 ...

Mσ1
1,a1

Mσ2
a1,a2

Mσ3
a2,a3

. . . |σ1σ2σ3 . . . 〉

= |ψ〉

(2.52)

This property allows to change the tensor form of states to obtain a numerically
cheaper expression for optimised calculations.
For example, one can demand left or right normalised states for further calculations in
order to simplify a given problem - e.g. iterative ground state search or local magneti-
sations, correlations and so on. This will be explained in more detail in chapter 2.7-2.9.

Left Normalised Canonical States

For a general state

|ψ〉 = ∑
σ

∑
a1,...

Mσ1
1,a1

Mσ2
a1,a2

Mσ3
a2,a3

. . . |σ〉 , (2.53)

a SVD of Mσ1
1,a1
→ M(σ1,1),a1

= ∑s1
U(σ1,1),s1

Ss1,s1V†
s1,a1

yields a left normalised tensor Uσ1
1,s1

.
S and V† can be multiplied to Mσ2 according to

|ψ〉 = ∑
σ

∑
a1,a2,...

∑
s1

Uσ1
1,s1

Ss1,s1V†
s1,a1

Mσ2
a1,a2

. . . |σ〉

= ∑
σ

∑
a2,...

∑
s1

Uσ1
1,s1

(
∑
a1

Ss1,s1V†
s1,a1

Mσ2
a1,a2

)
Mσ3

a2,a3
. . . |σ〉

= ∑
σ

∑
a2,...

∑
s1

Uσ1
1,s1

M̃σ2
s1,a2

Mσ3
a2,a3

. . . |σ〉 .

(2.54)

If one is not interested explicitly in singular values of Mσi , QR decomposition (QRD) is
more effective and yields the same effect of canonisation (see attachment, section B.2).
A sequential decomposition following the previous scheme leads to a set of left nor-
malised tensors for the MPS. The last decomposition of M̃σL

aL−1,1 contains the scalar
S1,1V†

1,1, which is the norm of |ψ〉 and can be set to 1.
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2.7 iterative search for ground states

Right Normalised Canonical States

The procedure is analogue, but the reshaping is Mσi
ai−1,ai → Mai−1,(aiσi) and the process

direction is inverted

|ψ〉 = ∑
σ

∑
aL−1,...

. . . MσL−1
aL−2,aL−1 MσL

aL−1,1 |σ〉

= ∑
σ

∑
aL−2,...

∑
sL−1

. . . MσL−1
aL−2,aL−1

(
UaL−1,sL−1 SsL−1,sL−1V†σL

sL−1,1

)
|σ〉

= ∑
σ

∑
aL−2,...

∑
sL−1

. . . MσL−2
aL−3,aL−2 M̃σL−1

aL−2,sL−1V†σL
sL−1,1 |σ〉 .

(2.55)

A nice feature working with this basis is that the general eigenvalue problem intro-
duced in the next chapter becomes simpler, because the norm of a MPS with two open
indices becomes the identity - represented by a black line in graphical notation.

Note
Left or right normalised canonical representation can only be approached for OBC.
This is easy to see, because for PBC the contraction of site L and site 1 the normalisa-
tion has to fulfill left and right self-orthogonality. For now, let us not consider this and
continue with left or right canonical MPS.

. . .

left canonical−−−−−−−−→

. . .

. . .

right canonical−−−−−−−−−→
. . .

Figure 9: Canonical gauges yield a very useful normalisation of the MPS, as they allow to avoid the
contraction of the responding sides during the calculation.

2.7 iterative search for ground states

The main idea of this chapter is to find a MPS representation for the ground state (with
energy E0). Consider the MPS with the same bond dimensions at state j: mj, mj+1, and
physical dimension d. This belongs to a set of MPS

F =

{
|ψ〉 =

L

∏
j=1

M[j]
σj

L⊗

i=1

|σi〉
∣∣ M[j] is a (mj ×mj+1 × d) tensor

}
. (2.56)
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2.7 iterative search for ground states

One tries to implement an algorithm, which finds the state |ψ′〉 that minimises the
energy

〈ψ′ |H |ψ′〉
〈ψ′ |ψ′〉 = min

|ψ〉 ε F
〈ψ |H |ψ〉
〈ψ |ψ〉 = E0 . (2.57)

This expression is equivalent to the eigenvalue problem H |ψ〉 = λN |ψ〉, which is re-
presented by the pictorial notation in Fig. 10.

∑

α1β1σj

E
σjσ

′
j

α1β1α2β2
· X

σj

α1β1 ∑

α1β1

Nα1β1α2β2
· X

σj

α1β1

1 2 j − 1 j j + 1 L− 1 L

. . . . . .

. . . . . .

. . . . . .

σ′
j

β2α2

σj

β1α1

= λj

1 2 j − 1 j j + 1 L− 1 L

. . . . . .

. . . . . .

σj

β1α1

β2α2

Figure 10: It is convenient to write the contraction with the searched local vector at site j (green tensor)
as an operator Eσjσ

′
j (the contraction of all grey tensors at the left side), which acts on an arbitrary

tensor Y
σj

α1 β1
like a vector transformation E

σjσ
′
j

α1 β1α2 β2
Y

σj

α1 β1
= Ỹ

σ′j
α2 β2

. Due to the normalisation condition
NYσj = Yσj (see Fig. 11), the canonical form simplifies the resulting generalised eigenvalue problem to
a common eigenvalue problem Eσjσ

′
j Xσj = λj NXσj = λjXσj .

To reduce calculation effort, it is reasonable to use the Hamiltonian in MPO represen-
tation (see chapter 2.5) and the MPS in canonical form. Thereby the problem can be
simplified to H |ψ〉 = λ |ψ〉, as left and right normalisation yield a normed state. One
has to build the contraction of MPS and MPO according to Fig. 10. The effective Hamil-

tonian E
σjσ
′
j

α1β1α2β2
(the contraction of all grey tensors at the left side of Fig. 10) has to

consist of three subparts:

1. A contraction of a left canonical MPS, its complex conjugate and all local MPO

sandwiched between them from site 1 to j− 1 ,

2. An additional Hamiltonian MPO at site j ,

3. A similar object as 1., but right canonical from site L to site j + 1 .

A detailed instruction for the left subpart of the effective Hamiltonian is provided in
the next chapter. For now, it is more useful to understand what to do with this object.
The effective Hamiltonian is hermitian by construction and all eigenvalues are real and
refer directly to the state’s energy. Also, in order to obtain a left or right normalised
canonical MPS, a total SVD is not needed, because after each optimisation step one is
just interested in the correct normalisation, which can be provided from the faster
QRD. This conserves the property for the norm of the MPS,

〈
ψα2

1...j−1

∣∣∣ψα1
1...j−1

〉
= δα2α1

and
〈

ψ
β2
j+1...L

∣∣∣ψ
β1
j+1...L

〉
= δβ2β1 . To obtain a MPS with optimally approximated energy,
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2.7 iterative search for ground states

1 2 3 j − 1 j j + 1 L− 2 L− 1 L

. . . . . .

. . . . . .

σj

β1α1

β2α2

canonical gauge

⇓

1 2 3 j − 1 j j + 1 L− 2 L− 1 L

σj

β1α1

β2α2

=
σj

β2α2

Figure 11: If the MPS becomes gauged after each iteration step, the generalised eigenvalue problem
becomes a common one which yields better numerical stability.

one has to find the eigenvalues and eigenvectors for the effective Hamiltonian for each
lattice position j. After finding the best local tensor to a corresponding minimal eigen-
value, the effective Hamiltonian has to be constructed with this tensor at its correct
position and the next lattice point has to be optimised. One has to be careful about
norming the tensor, because it depends on the direction of the routine: If the direc-
tion is from L → 1, the tensor has to be right canonical and otherwise left canonical.
When this procedure in one direction is completed, i.e. the last position is optimised
and gauged, the direction is inverted and the routine continues. One finished left and
right optimisation over the whole chain is called sweep. The procedure is finished, if
the specified number of sweeps or accuracy is reached. Since the bond dimension m
denotes the amount of considered singular values, which corresponds directly to the
amount of Schmidt coefficients, this approach truncates entanglement.

This method of finding the ground states is the essence of DMRG algorithms, first pro-
posed by Stephen R. White in 1993. A detailed introduction of the slightly different
variational principle can be found in his paper from 1993 [20]. It is based on Wilson’s
numerical renormalisation group method4 [22]. Whereas Wilson used an energetic ar-
gument, White cut away states which correspond to a low probability, given by the
eigenvalues of the reduced density matrix. This matrix is obtained from a successively
two-site growing system in contrast to the provided routine here. The variational MPS

approach is equivalent to the non-classical single-site DMRG.

4 The exact diagonalisation of a Hamiltonian in recursive relation form for a successively growing chain
is done until the specified accuracy is reached. The numerical difficulty is to diagonalise exactly for an
exponentially increasing number of states, therefore only the eigenstates of the lowest many particle
energies are kept. In this way, the dimension of the Hamiltonian is fixed and the computation time
increases linearly with the total chain length [2].
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2.8 building the effective hamiltonian

2.8 building the effective hamiltonian

This section gives the idea of the contraction steps for the effective Hamiltonian Eσjσ
′
j .

The fundamental basis of the construction effort is given by the a-priori tensor struc-
ture of MatLab arrays. Therefore, a contraction of two tensors is performed by re-
shaping, matrix multiplication and a final reshaping to the needed tensor form - also
index permutations, if needed. For now, the steps for the left side of the effective
Hamiltonian will be provided, the right side can be constructed in a similar way. In
the following, i

LH will be the resulting tensor of a contraction from site 1 → i of the
left canonical MPS with its complex conjugate and a MPO sandwiched between each
site, according to the left portion of the effective Hamiltonian in Fig. 10. A special case
may be the border locations, but we will introduce a left initial tensor 0

LHαβγ in order
to make every contraction equal.

α

β

γ

0
LHαβγ

≡

. . . β1

. . . δ1

. . . β2

β3

σ1

δ2

σ′
1

β4

Figure 12: Contraction steps for the left side of the effective Hamiltonian Eσjσ
′
j . Assume that one

contracts the grey tensor (which contains the contraction of i left-canonical sites and the corresponding
Hamiltonians in MPO form) i

L Hβ1δ1 β2 with the coloured tensors.

For simplicity and reasons of book-keeping, it is important to maintain a consistent
way of labelling the legs of the various tensors. In the following, the labelling is from
left side - top to bottom, to right side - top to bottom. Given a tensor of the MPS Aσ1

α1β1
of physical dimension d and bond dimensions m. The Hamiltonian in MPO form has
the same physical dimension d and the auxiliary dimension is assumed5 to be n. In or-
der to process a sequential contraction, it is highly recommended to draw the situation
before implementing it. The first step - away from the border i > 0 - is a multiplication
of

i
LH̃(δ1β2)(β3σ1) =

m

∑
β1

i
LH(δ1β2)β1

Aβ1(β3σ1) . (2.58)

A reshape to the correct index dimensions and permutation leads to the temporary ob-

ject i
LHβ3σ1δ1β2 with the green tensor contracted. The blue local MPO Hσ1σ′1

δ1δ2
→ H′(σ1δ1)(δ2σ′1)

is combined to this expression via

i
L

˜̃H(β3β2)(δ2σ′1)
=

d·n
∑

(σ1δ1)

i
LH̃(β3β2)(σ1δ1)

H′(σ1δ1)(δ2σ′1)
. (2.59)

5 The auxiliary dimensions depend on the number of terms of a local Hamiltonian - e.g. 1D Ising with
transverse field gives an overall n = 3 (except for the borders).
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2.8 building the effective hamiltonian

The last step contracts the red tensor and yields the final object

i+1
L H̃(β3δ2)β4

=
d·m
∑

σ′1β2

i
L

˜̃H(β3δ2)(σ′1β2)
A∗(σ′1β2)β4

, (2.60)

which may reshaped to i+1
L Hβ3δ2β4 . For the explicit contraction of the border object 0

LH
with the green, blue and red tensor, the final tensor fulfills the condition δα,1δβ,1δγ,1,
hence 0

LH has to be a (m× n×m) tensor with a single nonzero entry 0
LH1,1,1 = 1. One

may define a function HL
step(A[i+1], i

LH), which builds the resulting tensor i+1
L H out of

A[i+1] and i
LH according to the mentioned three contraction steps. This then provides

a sufficient way to build up the left part of the effective Hamiltonian successively with-
out a special case for the border.
The same things as mentioned can be done to build the right side of the effective
Hamiltonian composed of a right canonical MPS.

In order to solve the eigenvalue problem via the MatLab function eigs(), it is suffi-
cient to write a function

Heff

(
j
RH, j

LH, j, Y
)

, (2.61)

which contracts the effective Hamiltonian with an arbitrary vector Y(α1β1σj) of dimen-

sions (1 × m2d) and reshapes the new object Ỹ
σ′j
α2β2

to a (1 × m2d) vector. With this
implementation, one is able to give the function handle to eigs, such that

options.isreal = 0;

[Λj, λj] = eigs
(

@ (Y) Heff

(
j
RH, j

LH, j, Y
)

, m2d, 1, ’sr’, options
) (2.62)

solves for the eigenvector Λj of dimension (1×m2d) "m2d" with the first "1" smallest
real "’sr’" eigenvalue λj. A finished sweep is now the optimisation and left canonisa-
tion of each position j = 1 . . . L and then backwards from j = L . . . 1. In order to obtain
a simplified eigenvalue problem for each site j, after an optimisation, the resulting
local state has to become gauged. Whether right or left canonical depends strictly on
the current direction.

Note
For an estimation of the convergence quality, it is useful to save the eigenvalues af-
ter each computation step. Note that these eigenvalues have to fulfill the condition
λi+1 < λi for every optimisation step i. After several sweeps, these values may ran-
domly oscillate within the order of numerical precision - i.e. machine precision + error
- and the optimisation may be stopped. This oscillation can be seen in the demonstra-
tion chapter in Fig. 17.
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2.9 entanglement entropy, correlations and magnetisation

About Bond Dimensions

If the bond dimensions become large, the optimisation routine becomes very expen-
sive, due to the total computation time for all contractions, which scales polynomially
in m and d. Therefore one has to define the auxiliary dimensions not higher than neces-
sary. The bond dimension mj for site j cannot exceed6 the product
mj ≤ d ·min(mj−1, mj+1). This yields a "triangular" growth structure of the auxiliary
dimensions mj ≤ min(dj, dL−j). For the algorithm to be efficient, one truncates this
growth with an upper limit and gets a trapezoidal structure of the bond dimensions.
An alternative approach to this statically fixed bond dimensions can be a threshold
on the singular values to be considered or cut off "on the sweep". For models like
the well-known AKLT, this would lead to an upper limit mmax = 2 without loss of
information.

2.9 entanglement entropy, correlations and magnetisation

The global entanglement entropy between subsystems (1 . . . l) and (l + 1 . . . L) is simply
given by a SVD of site l. It is a measure to estimate how "non-separable" the subsystems
are and it summarises in a single number all kind of correlations between the subparts.
The entanglement entropy for the Ising model in a transverse field can be seen in
Fig. 20. Correlations Ci,j refer to more local properties, in other words, how much site
i "behaves" the same as site j, or how ordered the system looks like. The neighbour
correlations of the Ising and Heisenberg model are plotted in Fig. 19 and Fig. 30. This
section gives a rough overview about how to calculate such quantities using canonical
states. For a given operator O, correlations Ci,j are defined via

Ci,j =
〈
OiOj

〉
− 〈Oi〉

〈
Oj
〉

. (2.63)

In literature, when talking about correlations, the second term is often not considered
and only the quantity

〈
OiOj

〉
is specified.

1 i− 1 i i+ 1 j − 1 j j + 1 L
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Figure 13: This contraction yields the correlations
〈

Oi, Oj

〉
for a given operator O of site i with site j.

The black lines are representatives for the identity matrix 1. Because the MPS is gauged, the left and
right side of i and j can be simplified according to figure 14.

6 For sure it could be chosen bigger, but since the rank of a matrix denotes the number of singular values,
it is futile to exceed this quantity. Also note, since singular values contribute to the entanglement, the
bond dimension m is a direct limit of the entanglement between each part of the MPS.
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2.9 entanglement entropy, correlations and magnetisation

i i+ 1 j − 1 j
. . .

. . .

. . .

i

Figure 14: The contraction yields the same value for the correlation than Fig. 13 for a canonical MPS.
Local quantities are obtained via the right contraction.

The correlation functions in non-gapped systems decay exponentially with the abso-
lute distance of the sites

〈O0Or〉 ∝ e−
r
ξ with correlation length ξ . (2.64)

For ungapped systems, this relation becomes algebraic

〈O0Or〉 ∝ r−α . (2.65)

For the purposes of this thesis, these equivalences will be taken for granted, yet a
detailed derivation can be found in [10, 17]. The local quantities 〈Oi〉 can be obtained
in the same manner as

〈
OiOj

〉
(see Fig. 13), but without the second sandwiched MPO

between the two local tensors at site j.
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3
A P P L I C AT I O N O F M P S T O P H Y S I C A L M O D E L S

This chapter is the demonstration of the self implemented DMRG algorithm. For a
comparison of numerical results, the Ising model is sufficient, because it describes
a simple and integrable system. A main topic is the comparison to the analytical
solution in order to demonstrate the power of DMRG algorithms. Important is here the
notification of border and finite size effects, which unfortunately cannot be explained
and minimised in detail. The next section is about the 1D bilinear-biquadratic spin-1
Hamiltonian, which is only integrable in a few points of the rich phase diagram. After
the comparison to analytical - or published numerical - solutions, a short introduction
of the entanglement spectrum provides an insight into current research topics.

3.1 the 1d ising model in a transverse field

The 1D Ising model with transverse field serves as a toy model for the study of phase
transitions and describes well order-disorder ferroelectrics, or the magnetic ordering
in materials with singlet crystal field ground state. Given L spin-1/2 particles in a row
with nearest neighbour interactions, the Hamiltonian takes the form

H = −J
L−1

∑
i=1

Sx
i Sx

i+1 − Γ
L

∑
i=1

Sz
i . (3.1)

Γ corresponds the local transverse magnetic field and J provides the ferromagnetic
short range interaction. The main purpose in variations of Γ and J is due to J providing
a stable coupling between spins and therefore an order Γ destroying this order by
flipping the spins. The model can be used to simulate a phase transition from ferro-
(J � Γ) to paramagnetism (Γ � J). The two possible configurations in the pure
ferromagnetic case Γ = 0 are

|ψ〉↑ = |↑↑ . . . ↑↑〉 ,

|ψ〉↓ = |↓↓ . . . ↓↓〉 .
(3.2)

For ferromagnetics in the cases of perturbative transverse fields Γ � J, there is an
even and odd ground state composed of a superposition of spin-flips

∣∣ψ+
〉
=

1√
2
(|↑↑↑ . . . ↑〉+ |↓↓↓ . . . ↓〉) ,

∣∣ψ−
〉
=

1√
2
(|↑↑↑ . . . ↑〉 − |↓↓↓ . . . ↓〉) ,

(3.3)

which yield a null net magnetisation along the x axis. Pierre Pfeuty [12] extended the
solution from Lieb-Schultz-Mattis with finite-size solutions. The principal procedure
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3.1 the 1d ising model in a transverse field

is as follows: A Jordan-Wigner transformation maps the spin Hamiltonian to fermions
without spin. The spinless Hamiltonian is quadratic in Fermi annihilation and cre-
ation operators and can be diagonalised by Furier and Bogoliubov transformations.
Defining λ = J

2Γ , the resulting energy for OBC is given by [12]

E0 = −Γ
2 ∑

k
Λk ,

Λ2
k = 1 + 2λ cos(k) + λ2, where k is solution of − λ =

sin(k(N + 1))
sin(kN)

.
(3.4)

There is a way to transform the Ising model into Majorana form, such that the total
contribution to the ground state energy of each site is given by the overlap of bound-
ary modes. These modes are only spanned from the Majorana operators c1 and c2L.
An illustration of the resulting state is given in Fig. 15.

. . .

A
m

p
li

tu
d
e

Γ Γ Γ ΓJ J J J

c1, c2︸ ︷︷ ︸ c3, c4︸ ︷︷ ︸ c2L−3, c2L−2︸ ︷︷ ︸ c2L−1, c2L︸ ︷︷ ︸

Figure 15: Pictorial representation of the Ising model Hamiltonian in Majorana form. Similarly to
the AKLT state, the two border operators are unbounded. For states given by the boundary modes,
contributions from each site fall off exponentially in the bulk.

We can see in the appendix C.1 that the two-fold degeneracy of the ground state is
lifted by only an exponentially small splitting in system size [7], which hence is diffi-
cult to resolve numerically. This may be an explanation for slightly worse convergence
or symmetry breakings for cases 2Γ

J < 1 that can be noticed in Figs. 16, 18 and 19.

The numerical values of the analytical solution according to Eq. 3.4 for OBC have
been calculated for the Ising model with transverse field. All eigenvalues have been
recorded for a variation of the total number of sweeps at the pre-critical point Γ = 0.5J,
in order to estimate the optimum choice between accuracy and speed for the other
figures (see Fig. 17). In the ferromagnetic phase for values 2Γ < J the accuracy is
slightly worse than after the critical point (see Fig. 16). This is consistent with the
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3.1 the 1d ising model in a transverse field

quasi-degeneracy of the grounds for Γ < 0.5J, which came up in the discussion of the
Ising model in Majorana form.
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Figure 16: Absolute energy difference between numerical and analytical value in the ferromagnetic
phase under change of Γ and a total number of five sweeps with m = 50 and L = 100. Especially for
small transverse field constants, the DMRG converges slightly worse to the analytical solution.
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Figure 17: Absolute energy difference between numerical data and analytical solution versus sweep
number at critical point of the Ising model Γ

J = 1
2 with bond dimension m = 50 and L = 100 sites. If

interested, in the appendix, Fig. 26 shows the convergence, when rising m.

24



3.1 the 1d ising model in a transverse field

3.1.1 Magnetisation

For the magnetisation, the Ising model ground state |ψ±〉 for zero transverse field is
two-fold degenerate as mentioned in Eq. 3.2 and has the magnetisation
∑i
〈
ψ±
∣∣ Sx

i

∣∣ψ±
〉
= ± L

2 . When applying a field, the ground state is an (anti-) sym-
metric superposition and the total magnetisation should be zero. The magnetisation
graph along the z- and y-axis is as expected, whereas Mx appears to be nonzero, when
a transverse field is applied to the system. This happens because any small perturba-
tion - e.g. random tensor initialisation or start guesses for the algorithm - induces a
symmetry breaking and leads to a state with nonzero global magnetisation. When m
is raised, the edge where Mx drops to zero moves to the left, which gives a hint that
increasing the bond dimension dims the problem, because it increases the amount of
stored information between subsystems - hence, the precision in general. Again the
explanation of before seems plausible, contributions of local energies decay εj ∝ e−j/ξ

with correlation length ξ and hence the proper superposition is difficult to resolve
numerically. However, the magnetisation along z-axis fits the analytical solution ac-
cording to [12]

〈Sz
i 〉 =

1
2

G(0)

G(N) = L(N) + λL(N + 1) L(N) =
1
π

∫ π

0
dkΛ−1

k cos(kN) ,
(3.5)

with Λk =
√

1 + λ2 + 2λ cos(k) and λ = J
2Γ and chain length N.
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Figure 18: Absolute value |M| for the magnetisation along x, y and z axis under change of Γ. L = 100,
m = 50 and a total number of five sweeps. The analytical values for Mz have been calculated and are
represented by the red line.
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3.1 the 1d ising model in a transverse field

3.1.2 Correlations

The exact solutions from Pfeuty [12] provide a solution for correlators according to

〈
Sx

i , Sx
i+1
〉
=

1
4

∣∣∣∣∣∣∣∣∣∣∣

G(−1) G(−2) . . . G(−L)

G(0) G(−1) . . . G(−L + 1)
...

...
...

G(L− 2) G(L− 1) . . . G(−1)

∣∣∣∣∣∣∣∣∣∣∣

, (3.6)

Fig.19 gives a comparison with numerically obtained results.

Xxi ,xi+1 \
Xxi ,xi+2 \
Xxi ,xi+3 \
Xxi ,xi+4 \

0.0 0.5 1.0 1.5 2.0

0.001

0.01

0.1

1

G

Xx
i,

x
j\

Figure 19: Neighbour correlations versus Γ. The bond dimension is m = 25 for a total system length
of L = 32. The analytical solution is represented by the coloured lines, therefore the simulation quality
for correlations is estimated to be very accurate.

3.1.3 Entropy

The analytical relations of the entanglement entropy are given by [19]

SA = c
3 log2(L) + b , for critical

SA = c
3 log2 ξ + b , for non-critical

}
field constants Γ. (3.7)

Theoretically, going to infinity for both bond dimensions and number of sites, one is
able to directly read off the correlation length of the system. In this thesis, we will not
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3.1 the 1d ising model in a transverse field

investigate further correlation lengths. Just note from Fig. 20 that the saturation point
within system length is not reached when coming closer to the critical point, which is
consistent with the formulation above, that the entropy obeys an area law ∝ log(L).

G�J = 0.3

G�J = 0.4

G�J = 0.5
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Figure 20: Plot of the entanglement entropy of the left system versus increasing subsystem size. It can
be noticed quite nicely, that for non-critical transverse field the entropy gets to a saturation, whereas
for critical field this saturation does not exist - at least for 32 sites. For a better notice, the right figure
is a run with bond dimension m = 100 and L = 200 for the critical point Γ = 0.5J.

3.1.4 Conclusions and Perspective

It has been tried to force the DMRG to converge to one particular state |ψ+〉 , |ψ−〉
by applying a small longitudinal field as perturbation to lift the degeneracy. But the
field has found to be of order O(10−6) for Γ/J = 0.1 and L = 100, hence energies
differ significantly from correct ones without perturbation and this method has to be
considered not reasonable. Regardless of the energies’ convergence to nearly machine
precision, the state with zero x magnetisation for L = 100 sites and transverse field
Γ ≈ 0.1 cannot be found, even with a maximum bond dimension m = 5001. This is
in agreement with the discussion, that the lifting between the quasi degenerate state
is most probably below machine precision for L = 100. Another strategy to obtain
a proper superposition could be to initialise not with random tensors, but with the
tensors resulting from zero transverse field directly in a proper superposition |ψ±〉
(referring to Eq. 3.2). To get a better insight in border and finite size influences, a
comparison to solutions obtained from infinite size algorithms and to PBC would be
sufficient but unfortunately could not be investigated further due to time limitations.
For the sake of completeness, the antiferromagnetic case has been attached in Fig. 24.

1 This run had an elapsed time of ≈ 10 h
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3.2 bilinear biquadratic spin-1 chain

3.2 bilinear biquadratic spin-1 chain

The bilinear biquadratic spin-1 Hamiltonian with local interaction terms

H =
L−1

∑
j=1

αSjSj+1 + β
(
SjSj+1

)2
(3.8)

yields a very rich phase diagram. It is common to write the coefficients α = cos(θ),
and β = sin(θ) in order to describe the system’s Hamiltonian only with a systemwide
parameter θ.

π/4

π/2

−π/4−3π/4

Haldane
∆ > 0

Trimer
∆ = 0

Ferro
∆ = 0

Dimer
∆ > 0

θ = 0
Heisenberg

θ = −π/2
Klümper

tan(θ) = 1/3
AKLT

Figure 21: Phase chart for different values of θ. ∆ represents the energy gap.

Notice that SjSj+1 = Sx
j Sx

j+1 + Sy
j Sy

j+1 + Sz
j Sz

j+1 is a dot product of the composed spin-

vectors ST
j =

(
Sx

j , Sy
j , Sz

j

)T
. The BLBQ Hamiltonian contains a gapless ferromagnetic

phase and an antiferromagnetic interval with trimer, Haldane and dimer phase.
The Haldane phase can be found for θ ε [−π/4, π/4] and is expected to contain sys-
tems with unique ground state and finite excitation gap. Important points are the AKLT

point for tan(θ) = 1/3, where the ground state energy can be given analytically [1]
and the Heisenberg model for θ = 0. Ferromagnetics can be found in the interval for
θ ε [π/2, 5π/2]. The pure biquadratic Hamiltonian for θ = −π/2 has been solved by
Klümper et al. [8].
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3.2 bilinear biquadratic spin-1 chain

The Hamilton of Eq. 3.8 can be reduced to

H =

(
cos(θ)− sin(θ)

2

)
SiSj + sin(θ)

(
ViVj +

1
2
WiWj

)
,

with





Vα
i = Sα

i
2

Wγ
i =

{
Sα

i , Sβ
i

} ,
(3.9)

which then takes the form in local MPOs according to Fig. 22.
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Figure 22: Local terms of the anisotropic bilinear-biquadratic spin-1 Hamiltonian. Note that the reduc-
tion to eq. 3.9 reduces the dimension of the local Hamiltonian to 11× 11. All other terms - those who
are not explicetly assigned in this figure - are zero.

3.2.1 θ = arctan(1/3) - The AKLT Point

According to chapter 2.4, a direct comparison of the variational approach and the AKLT

state is possible. The ground state energy can be calculated with the AKLT tensors
analogue to the observables for MPS

E0 =
〈ψAKLT |H |ψAKLT〉
〈ψAKLT |ψAKLT〉

. (3.10)

As expected, in order to receive an acceptable accuracy, a high bond dimension is
unnecessary.
One observes that even for m = 2 the mean deviation is O(10−12), as predicted by
the exact construction. For the AKLT point, at each site j the tensors are equal, hence
the entanglement entropy should be constant for each subsystem size Lleft, the offset
dependent of the normalisation condition. In addition, the spectrum should consist of
doubly degenerated singular values 1√

2
.
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3.2 bilinear biquadratic spin-1 chain

m ∆Energy

2 1.665 45× 10−12

20 2.220 45× 10−16

50 2.220 45× 10−16

Table 1: Energy difference obtained from AKLT and DMRG tensors at L = 100.

3.2.2 θ = 0 - The Heisenberg Point

The isotropic antiferromagnetic spin-1 Heisenberg chain is the simplest example of a
system with Haldane phase and thus often called the Haldane chain. For the isotropic
case at θ = 0 and Γ = 0, the Hamiltonian takes the Heisenberg form

H = −J
L−1

∑
j=1
SjSj+1 . (3.11)

For spin-1/2, this can be exactly solved by approaching a Bethe ansatz. This is not pos-
sible for spin-1, therefore the numerical solution becomes very interesting to analyse
properties that may differ from the spin-1/2 Heisenberg model according to Haldane’s
suggestion from 1983, that there has to be a fundamental difference between spin-1/2
and spin-1. This suggestion was not intuitive, because the derived solutions seemed to
be appropriate for all spins. Stephen White et al. showed the power of DMRG with cal-
culating some expectation values for the Haldane chain. This reference energy value
has been obtained with the infinite lattice method - where the system length is in-
creased until convergence for a fixed bond dimension is reached [20]. Also, White et
al. removed the inconvenient degeneracy to exclude effects of the bulk by a chain con-
struction with real spin-1/2 particles at the border. In order to receive a result with
best uniformly distributed energy per site, he also varied the coupling at the chain
ends. This has not been implemented in the DMRG here and has to be considered care-
fully for the following comparison.

The value for the energy per site
〈
Sx

i Sx
i+1

〉
+
〈
Sy

i Sy
i+1

〉
+
〈
Sz

i Sz
i+1

〉
has been recorded for

m = 50 and L = 100 at the very centre of the chain, because border effects at the centre
are minimal (see attachment, Fig. 30). In order to estimate the significant numbers -
outside the brackets () - the same has been calculated for L = 90 and L = 110.

L E0

90 −1.401 483 485 119 951

100 −1.401 484 125 904 029

110 −1.401 485 506 786 237

Table 2: Energy per site for the Haldane chain. To estimate the significant numbers for L = 100, L = 90
and L = 110 have been recorded, aswell.
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3.2 bilinear biquadratic spin-1 chain

E0 = −1.401 48(4)

E0,ref. = −1.401 484 038 971(4)
(3.12)

Yet this comparison is not sufficient. For a total comparison, the limits for both m→ ∞
and L → ∞ have to be taken, e.g. by iteratively rising m and then L. The result is
estimated to be reasonable considering that it is not obtained from an infinite site and
infinite bond dimension measurement.

3.2.3 θ = −π/2 - The Klümper Point

The Klümper Hamiltonian can be written in terms of spin projection operators Pj in
an analogue way to the AKLT Hamiltonian (see Eq. 2.28)

HKlümper = −3P0 − 1 . (3.13)

Since there cannot be a singlet on every link, the phase is dimerised. For even system
sizes L, there is only a unique configuration for the ground state. For odd system
sizes, there are two energetically equal dimer states hence for the superposition every
bond becomes equal, too. These two different cases are noticeable in the entanglement
spectrum for even and odd system sizes L (see Fig. 23).

3.2.4 Entanglement Spectrum at different Phase Points

The entanglement spectrum provides a way to analyse the quantum mechanical struc-
ture of entangled states. For the AKLT state, the spectrum is doubly degenerate, which
is a direct consequence of the maximally entangled virtual spin-1/2. In a similar way,
an analysis of singular values is a direct check, if a toy model seems plausible or
not. Also, it may be a new idea to define a phase [13], since global quantities like
string order turn out to be insufficient under perturbations or deformations of the
Hamiltonian. For the Haldane phase exists some structure of virtual spin subcompo-
nents and the bonds between each site are equal. Moreover, the doubly degenerate
highest singular value can be found in the entire Haldane chain (see Fig.: 23). This is
associated to symmetry protected topological order [14], which means that there is a long-
range entanglement pattern protected by symmetries in this phase. This also implies
that the entanglement spectrum gives an idea of what are the physical properties at
the boundary. The fine splitting at some peculiar points (i.e. − arctan(1/3), −1/2 ·
arctan(1/3), 2 · arctan(1/3)) is caused by transition effects. The Klümper point is as
expected for the highest singular values. Even though the upper spectrum can be seen
in the figure, yet a detailed discussion would reach beyond the scope of this introduc-
tory thesis.
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Figure 23: Entanglement spectrum at different points θ of the BLBQ phase diagram. The spectrum of
the Klümper phase shows a difference between the even and odd bounds, because the model favours
contractions of the real spin-1 to spin-0, hence neighbouring bonds differ in entanglement for even
system sizes L. At θ = −1/2 · arctan(1/3) and θ = 2 · arctan(1/3), the highest two singular values are
nearly degenerated. One can notice that the pattern of these two values is found in the entire Haldane
phase.
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4
S U M M A RY A N D O U T L O O K

In this thesis, the basics of matrix product states and the density matrix renormalisa-
tion group under a quantum information perspective have been allocated. The main
aspects to implement a reformulated DMRG have been provided and can be used as in-
structions to code an own programme. Especially the attached code should be helpful
to do so.

A review of existing results and the comparison gave us a deeper understanding of
what it is good for. An insight in the Ising and BLBQ model has been given to under-
stand the practical relevance of MPS approaches. Within the demonstration chapter,
we have seen an area law for the critical Ising model. For the BLBQ Hamiltonian, the
AKLT and Klümper points have been analysed both analytically and numerically. The
numerical value for the energy per site of the Haldane chain has been checked.

We learned, that the main purpose of the MPS formalism is not only the effective
reconstruction of a systems ground state. It can be used to analyse a system’s deepest
structure and to quantify its entanglement or particular local quantities. Moreover,
it provides techniques to search for quantities that redefine the understanding of a
phase.

Since a symmetry breaking, border and finite size effects have been noticed, they have
to be reviewed more intense in future work.

We hope, that this thesis provides a basic introduction in the field of one dimensional
MPS approaches.
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A P P E N D I X A - P R O G R A M M E C O D E

a.1 aklt model

This programme has been implemented for getting used to MatLab and review the
motivation for the AKLT matrices. Running this file yields only two nonzero Schmidt
coefficients for each S_1, S_2, S_3. The same states can be reproduced - modulo norm
of the state - by contracting the AKLT matrices. Be careful - the superposition state is
not been given directly yet needs to be constructed via a sum/difference of the correct
states.

1 %% Spin 1 Particles at Latticepoints of a 1D Chain

% spin 1 operators
%-----------------
S = zeros (3,3,3);

6 Sx = [0 1 0 ; 1 0 1 ; 0 1 0]*1/ sqrt (2);
Sy = [0 1 0 ; -1 0 1 ; 0 -1 0]*1/( sqrt (2)*i);
Sz = [1 0 0 ; 0 0 0 ; 0 0 -1];
S(:,:,1) = Sx;
S(:,:,2) = Sy;

11 S(:,:,3) = Sz;
Dim_S=3;
J = 3;

% system length , boundary condition
16 %----------------------------------

L=4;
BC = ’OBC ’;
alpha = 1/3;

21 % hilbert space dimension
%------------------------
Dim_H = Dim_S^L;

% system spin matrix
26 %-------------------

S_H = zeros(Dim_H,Dim_H,L,J);

%% Spin Loop

31 % loop over x,y,z
%----------------
for j=1:J

% loop over all points
for l=1:L

36 tp=1;
% correct position of the 3x3 S_j matrix in tensor product chain
for i=1:L

if i==l
tp = kron(S(:,:,j),tp);

41 else
tp = kron(eye(Dim_S),tp);

end
end
% tp is now the S_lj component of the total spin operator

46 % and saved in S_H
S_H(:,:,l,j) = tp;

end
end
clear tp j l i S_j

51
%% Constructing the Hamiltonian

H = zeros(Dim_H);
if BC == ’OBC ’

56 L_BC = L-1;
else if BC == ’PBC ’

L_BC = L;
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else disp(’Check Boundary Conditions ’);
end

61 end

for l=1:L_BC
tp1 = zeros(Dim_H);
tp2 = zeros(Dim_H);

66 for j=1:3
% add up S_l*S_(l+1) component by component j
if l == L

tp1 = tp1 + S_H(:,:,l,j)*S_H(:,:,1,j);
else

71 tp1 = tp1 + S_H(:,:,l,j)*S_H(:,:,l+1,j);
end

end
tp2 = alpha*tp1^2;
H = H + tp1 + tp2;

76 end
H = sparse (1/2*(H + conj(H’)));
clear j l tp1 tp2 L_BC

%% diagonal form of H
81

% find ONB of H
[Evec_H,Eval_H] = schur(full(H));
% sort Eval and Evec of H the same way
[Eval_H,Order_EvalH] = sort(diag(Eval_H));

86 Evec_H = Evec_H(:,Order_EvalH);
% degeneracy of ground state energy
Deg_H= nnz(abs(Eval_H - Eval_H(1))<1e-12);
G = Evec_H(:,1:Deg_H);

91 %% Constructing the Total Spin Operator

S_T = zeros(Dim_H,Dim_H,J);
% construction S_T component by component
%----------------------------------------

96 for j=1:J
% S_Tj is a square dim_H matrix
S_Tj = zeros(Dim_H);
% sum over the lattice points
for l=1:L

101 S_Tj = S_Tj + S_H(:,:,l,j);
end
S_T(:,:,j) = S_Tj;

end
clear j l

106
S_Tsq = zeros(Dim_H);
for j=1:J

S_Tsq = S_Tsq + (S_T(:,:,j))^2;
end

111 clear j l

% symmetrical machine errors
%---------------------------
S_Tsq = 1/2 * (S_Tsq + conj(S_Tsq ’));

116 S_Tz = 1/2 * (S_T(:,:,3) + conj(S_T(:,:,3) ’));

[Evec_STsq ,Eval_STsq] = schur(G’*S_Tsq*G);
Eval_STsq = diag(Eval_STsq);

121 %% Entangled E0 Spin States

% the ONB of S_T & H: a projection of G to the S_T subspace of H
%---------------------------------------------------------------

126 % [S_Tsq ,S_Tz] != 0
% find entries of entangled s = 2 states
Deg_STsq = find(abs(Eval_STsq - 2) < 1e-10);
Deg_EvecSTsq = G * Evec_STsq(:,Deg_STsq);
[Evec_STz ,Eval_STz] = schur(Deg_EvecSTsq ’*S_Tz*Deg_EvecSTsq);

131 G = G * Evec_STsq;
% first state is a not degenerated s=0 spin state;
G(2: Dim_H,Deg_STsq) = G(2:Dim_H,2:Deg_H)*Evec_STz;

% spin measurement
136 %-----------------

Proj_SSz = zeros (2,4);
for s=1:Deg_H

Proj_SSz(1,s) = G(:,s)’*S_Tsq*G(:,s);
Proj_SSz(2,s) = G(:,s)’*S_Tz*G(:,s);

141 end
clear s

35



A.1 aklt model

%% Building the Tensor Network (|1 -1> State)

146 % sequential svd
%---------------
MPS_Class = zeros(L,Dim_S,Dim_S,Dim_S,Dim_S);
Gamma _1 = zeros(L,Dim_S,Dim_S);
Gamma _2 = zeros(L,Dim_S,Dim_S,Dim_S^2);

151 Gamma _3 = zeros(L,Dim_S^2,Dim_S,Dim_S);
Gamma _4 = zeros(L,Dim_S,Dim_S);

for State =1:4
KetSSz = reshape(G(:,State),[Dim_S,Dim_S^(L-1)]);

156 [U_1,S_1,V_1] = svd(full(KetSSz),’econ ’);
Gamma _1(State ,:,:)=reshape(U_1,[Dim_S,Dim_S]);
W_1 = S_1*V_1’;
W_1r = reshape(W_1,[Dim_S^2,Dim_S^2]);
[U_2,S_2,V_2] = svd(W_1r,’econ ’);

161 Gamma _2(State ,:,:,:) = reshape(U_2,[Dim_S Dim_S Dim_S^2]);
W_2 = S_2*V_2’;
W_2r = reshape(W_2,[Dim_S^3,Dim_S]);
[U_3,S_3,V_3] = svd(W_2r,’econ ’);
Gamma _3(State ,:,:,:) = reshape(U_3,[Dim_S^2 Dim_S Dim_S]);

166 W_3 = S_3*V_3’;
Gamma _4(State ,:,:) = W_3;
S_1 = diag(S_1);
S_2 = diag(S_2);
S_3 = diag(S_3);

171 Trash = 10^ -10;

Gamma _1(abs(Gamma _1) < Trash) = 0;
Gamma _2(abs(Gamma _2) < Trash) = 0;
Gamma _3(abs(Gamma _3) < Trash) = 0;

176 Gamma _4(abs(Gamma _4) < Trash) = 0;

MPS_Classr = reshape(permute(MPS_Class ,[2:(L+1) ,1]) ,[Dim_H,L]);
clear i j k l

end
181

%% TN Construction with the AKLT Model

% Pauli matrices
%---------------

186 sig_x = [0 1 ; 1 0];
sig_y = [0 -i ; i 0];
sig_z = [1 0 ; 0 -1];
Dim_P = 2;

191 % ladder operators
%-----------------
sig_p = 1/2*( sig_x + i*sig_y);
sig_m = 1/2*( sig_x - i*sig_y);

196 % AKLT operators
%---------------
A = zeros (2,3,2);
A(:,1,:) = sig_p;
A(:,2,:) = -sig_z/sqrt (2);

201 A(:,3,:) = -sig_m;

% state construction
%-------------------
MPS_AKLT = zeros(Dim_P,Dim_S,Dim_S,Dim_S,Dim_S,Dim_P);

206 for alpha = 1:Dim_P
for j = 1:Dim_S

for k = 1:Dim_S
for l = 1:Dim_S

for m = 1:Dim_S
211 for beta = 1:Dim_P

MPS_AKLT(alpha ,j,k,l,m,beta)= MPS_AKLT(alpha ,j,k,l,m,beta)...
+ reshape(A(alpha ,j,:) ,[1,Dim_P])...
*reshape(A(:,k,:) ,[Dim_P,Dim_P])...
*reshape(A(:,l,:) ,[Dim_P,Dim_P])...

216 *A(:,m,beta);
end

end
end

end
221 end

end

clear alpha j k l m beta
MPS_AKLTr = reshape(permute(MPS_AKLT ,[2:(L+1) 1 (L+2)]) ,[Dim_H,L]);
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a.2 variational approach

This file is the implemented MPS approach. The resulting two MPS are a left canonical
ACanLQ,ACanLR system with QRD optimalvectors and right canonical ACanRQ,ACanRR.
The output is energy per site after each optimisation step and a comparison to the pre-
vious optimisation in order to check the convergence.
%% Energy Optimisation
% DMRG Algorithm for Energy Optimisation.
% This file provides after each step a total right and a total left
% canonical MPS , which consists of optimal tensors , received from the

5 % determination of eigenvalues and vectors for the effective hamiltonian.

% calculate computation time
tic

10 % global variables
%-----------------
global nbond m n d L
InitialValues;

15 % due to a change in physical dimension and MPO bond dimension
%-------------------------------------------------------------
Size_MPOH = size(H);
nbond = Size_MPOH (1);
n = nbond*ones(1,L+1);

20
HR = cell(1,L+1);
HL = cell(1,L);

% deal with borders: make a dirac delta for the first and last MPO
25 % then every contraction becomes equal

%-----------------------------------------------------------------
DD = zeros(1,n(L) ,1);
DD(1,n(L) ,1)=1;
DD = reshape(DD ,[m(L+1),n(L),m(L+1)]);

30 HR{L+1}=DD;
clear DD
DD = zeros(1,n(2) ,1);
DD(1,1,1)=1;
DD = reshape(DD ,[m(1),n(2),m(1)]);

35 HL{1}=DD;
clear DD

% provides the initial right and left canonical MPS
%--------------------------------------------------

40 for j=L:-1:1
HR = HRStep(HR,ACanRQ ,j);

end
clear j
for j=1:L

45 HL = HLStep(HL,ACanLQ ,j);
end
clear j

% set a waitbar for progress visualisation
50 %-----------------------------------------

h1 = waitbar(0,’1’,’Name ’,’Optimisation ...’,...
’CreateCancelBtn ’,’setappdata(gcbf ,’’canceling ’’,1) ’);

setappdata(h1,’canceling ’,0);

55 EVec = cell(1,L);
EVal = zeros(tns ,2*L);
% after the first sweep , startguesses are used
%---------------------------------------------
startguessl = cell(1,L);

60 for j=1:L
startguessl{j} = rand([m(j)*m(j+1)*d(j) ,1]);

end
clear j

65 startguessr = cell(1,L);
for j=1:L

startguessr{j} = rand([m(j)*m(j+1)*d(j) ,1]);
end
clear j

70
for s=1:tns

for j=1:L
opts.v0= startguessl{j};
% DMRG
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75 [EVec{j},EVal(s,j)] = eigs(@(X)(H_eff(HL,HR ,j,X))...
,m(j)*d(j)*m(j+1) ,1,’sr’,opts);

% startguess for next optimisation
startguessl{j}=EVec{j};
% bringing the eigenvector in the right order

80 EVec{j} = permute(reshape(EVec{j},[m(j),d(j),m(j+1)]) ,[1,3,2]);
% make the optimal tensor canonical
[ACanLQ{j},~,ACanLR{j},~] = MakeCanonical(EVec{j},’L’);
% go with the left superblock to the next step
HL = HLStep(HL,ACanLQ ,j);

85 % waitbar stuff
% --------------
if getappdata(h1,’canceling ’)

delete(h1)
break

90 end
waitbar(j/(L-1),h1,[’sweep ’,num2str(s),’/’,num2str(tns)])

end
clear j
for j=L:-1:1

95 opts.v0 = startguessr{j};
[EVec{j},EVal(s,L+j)] = eigs(@(X)(H_eff(HL ,HR,j,X)),m(j)*m(j+1)*d(j),1,’sr’,opts);
startguessr{j}=EVec{j};
EVec{j} = permute(reshape(EVec{j},[m(j),d(j),m(j+1)]) ,[1,3,2]);
[~,ACanRQ{j},~,ACanRR{j}] = MakeCanonical(EVec{j},’R’);

100 HR = HRStep(HR,ACanRQ ,j);
% waitbar stuff
% --------------
if getappdata(h1,’canceling ’)

delete(h1)
105 break

end
waitbar(j/(L-1),h1,[’sweep ’,num2str(s),’/’,num2str(tns)])

end
if s > 1 && EVal(s,L) < EVal(s-1,L)

110 disp([’sweep ’,num2str(s),’ optimisation successful ’,num2str(EVal(s,L)/L)])
elseif s > 1 && EVal(s,L) - EVal(s-1,L) <= 1e-12

disp([’sweep ’,num2str(s),’ threshold ’,num2str(EVal(s,L)/L)])
elseif s > 1 && EVal(s,L) > EVal(s-1,L)

disp([’sweep ’,num2str(s),’ error: ’,num2str(EVal(s,L)/L)])
115 end

end
clear s

delete(h1)
120 toc

The next list is the code for the calculation of expectation quantities of a MPO with the
set of canonical MPS A and their corresponding R matrix after QRD.
function Obs = EV_Obs(A,R,MPO ,dir)

global m d L

5 Size_MPO = size(MPO);
nbond = Size_MPO(1);

n = nbond*ones(1,L+1);

10 if strcmp(dir ,’LR ’)
MPOL = cell(1,L+2);
DD = zeros(1,n(2) ,1);
DD(1,1,1)=1;
DD = reshape(DD ,[m(1),n(1),m(1)]);

15 MPOL {1}=DD;
clear DD

DD = zeros(1,n(L) ,1);
DD(1,n(L) ,1)=1;

20 DD = reshape(DD ,[m(L+1),n(L+1),m(L+1)]);
MPOL{L+2}=DD;
clear DD
for j=1:L

% (L-R) direction
25 %----------------

% Contraction 1 (HL, MPS)
Dt = reshape(permute(MPOL{j},[2,3,1]) ,[n(j)*m(j),m(j)])*reshape(A{j},[m(j),m(j+1)*d(j)]);
D = permute(reshape(Dt ,[n(j),m(j),m(j+1),d(j)]) ,[3,4,1,2]);
% Contraction 2 ((HL, MPS), MPO)

30 Et = reshape(permute(D,[1,4,2,3]) ,[m(j+1)*m(j),d(j)*n(j)])*reshape(permute(MPO ,[3,1,2,4]) ,[d(j)*n(j),n(j
+1)*d(j)]);

E = permute(reshape(Et ,[m(j+1),m(j),n(j+1),d(j)]) ,[1,3,4,2]);
% Contraction 3 (((HL, MPS), MPO), MPS)
Ft = reshape(E,[m(j+1)*n(j+1),d(j)*m(j)])*reshape(permute(conj(A{j}) ,[3,1,2]) ,[d(j)*m(j),m(j+1)]);
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C = reshape(Ft ,[m(j+1),n(j+1),m(j+1)]);
35

MPOL{j+1} = C;
end
clear Dt D Et E Ft C
% Contraction 4 ((((HL , MPS), MPO), MPS),HL{L+2})

40 MPOL{L+2} = MPOL{L+1}*(R*R’)*MPOL{L+2}’;
Obs = MPOL{L+2};

elseif strcmp(dir ,’RL ’)
MPOR = cell(1,L+2);

45 DD = zeros(1,n(L+1) ,1);
DD(1,n(L+1) ,1)=1;
DD = reshape(DD ,[m(L+1),n(L+1),m(L+1)]);
MPOR{L+2}=DD;
clear DD

50
DD = zeros(1,n(L) ,1);
DD(1,1,1)=1;
DD = reshape(DD ,[m(L+1),n(L),m(L+1)]);
MPOR {1}=DD;

55 clear DD
for j=L:-1:1

% (R-L) direction
%----------------
% Contraction 1 MPS , HR

60 Dt = reshape(permute(A{j},[1,3,2]) ,[m(j)*d(j),m(j+1)])*reshape(MPOR{j+2},[m(j+1),n(j+1)*m(j+1)]);
D = reshape(Dt ,[m(j),d(j),n(j+1),m(j+1)]);
% Contraction 2 ..., MPO
Et = reshape(permute(D,[1,4,2,3]) ,[m(j)*m(j+1),d(j)*n(j+1)])*reshape(permute(MPO ,[3,2,1,4]) ,[d(j)*n(j+1),

n(j)*d(j)]);
E = permute(reshape(Et ,[m(j),m(j+1),n(j),d(j)]) ,[1,3,4,2]);

65 % Contraction 3 ..., MPS*
Ft = reshape(conj(permute(A{j},[1,3,2])),[m(j),d(j)*m(j+1)])*reshape(permute(E,[3,4,1,2]) ,[d(j)*m(j+1),m(

j)*n(j)]);
C = permute(reshape(Ft ,[m(j),m(j),n(j)]) ,[2,3,1]);

MPOR{j+1} = C;
70 end

MPOR {1} = MPOR {1}* MPOR {2}’;
Obs = MPOR {1};
end

75 end

In the following one can see the calculation of correlation values. The point is, that -
assuming j > i - only the contraction from i to j contributes to the final value (norma-
lisation). After site j, the chain may be closed with the contraction of R and R† from
the QRD of the optimum eigenvector.
function Obs = EV_Corr(A,R,MPO ,MPOCorr ,pos1,pos2)

global m d L

5 Size_MPO = size(MPO);
nbond = Size_MPO(1);

n = nbond*ones(1,L+1);

10 if pos2>=pos1
elseif pos1>pos2

tp=pos2;
pos2=pos1;
pos1=tp;

15 clear tp
end

MPOL = cell(1,L+2);
MPOL{pos1} = reshape(eye(m(pos1),m(pos1)) ,[m(pos1),n(pos1),m(pos1)]);

20 for j=pos1:pos2
% (L-R) direction
%----------------
% Contraction 1 (HL, MPS)
Dt = reshape(permute(MPOL{j},[2,3,1]) ,[n(j)*m(j),m(j)])*...

25 reshape(A{j},[m(j),m(j+1)*d(j)]);
D = permute(reshape(Dt ,[n(j),m(j),m(j+1),d(j)]) ,[3,4,1,2]);
% Contraction 2 ((HL, MPS), MPO)
if j==pos1||j==pos2
Et = reshape(permute(D,[1,4,2,3]) ,[m(j+1)*m(j),d(j)*n(j)])*...

30 reshape(permute(MPOCorr ,[3,1,2,4]) ,[d(j)*n(j),n(j+1)*d(j)]);
else
Et = reshape(permute(D,[1,4,2,3]) ,[m(j+1)*m(j),d(j)*n(j)])*...
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reshape(permute(MPO ,[3,1,2,4]) ,[d(j)*n(j),n(j+1)*d(j)]);
end

35 E = permute(reshape(Et ,[m(j+1),m(j),n(j+1),d(j)]) ,[1,3,4,2]);
% Contraction 3 (((HL, MPS), MPO), MPS)
Ft = reshape(E,[m(j+1)*n(j+1),d(j)*m(j)])*...

reshape(permute(conj(A{j}) ,[3,1,2]) ,[d(j)*m(j),m(j+1)]);
C = reshape(Ft ,[m(j+1),n(j+1),m(j+1)]);

40 MPOL{j+1} = C;
end
clear Dt D Et E Ft C
Obs = trace(conj(R{pos 2})*reshape(MPOL{pos 2+1},[m(pos 2+1),m(pos 2+1)])...

*R{pos2});
45

end

The next two auxilary functions sucessively contract the right and left side of the
effective Hamiltonian.
function [HL] = HLStep(HL,A,j)

global m n d H
% (L-R) direction

4 %----------------
% Contraction 1 (HL, MPS)
Dt = reshape(permute(HL{j},[2,3,1]) ,[n(j)*m(j),m(j)])*reshape(A{j},[m(j),m(j+1)*d(j)]);
D = permute(reshape(Dt ,[n(j),m(j),m(j+1),d(j)]) ,[3,4,1,2]);
% Contraction 2 ((HL, MPS), MPO)

9 Et = reshape(permute(D,[1,4,2,3]) ,[m(j+1)*m(j),d(j)*n(j)])*reshape(permute(H,[3,1,2,4]) ,[d(j)*n(j),n(j+1)
*d(j)]);

E = permute(reshape(Et ,[m(j+1),m(j),n(j+1),d(j)]) ,[1,3,4,2]);
% Contraction 3 (((HL, MPS), MPO), MPS)
Ft = reshape(E,[m(j+1)*n(j+1),d(j)*m(j)])*reshape(permute(conj(A{j}) ,[3,1,2]) ,[d(j)*m(j),m(j+1)]);
C = reshape(Ft ,[m(j+1),n(j+1),m(j+1)]);

14
HL{j+1} = C;

end

function [HR] = HRStep(HR,A,j)
global m n d H

4 % (R-L) direction
%----------------
% Contraction 1 MPS , HR
Dt = reshape(permute(A{j},[1,3,2]) ,[m(j)*d(j),m(j+1)])*reshape(HR{j+1},[m(j+1),n(j+1)*m(j+1)]);
D = reshape(Dt ,[m(j),d(j),n(j+1),m(j+1)]);

9 % Contraction 2 ..., MPO
Et = reshape(permute(D,[1,4,2,3]) ,[m(j)*m(j+1),d(j)*n(j+1)])*reshape(permute(H,[3,2,1,4]) ,[d(j)*n(j+1),n(

j)*d(j)]);
E = permute(reshape(Et ,[m(j),m(j+1),n(j),d(j)]) ,[1,3,4,2]);
% Contraction 3 ..., MPS*
Ft = reshape(conj(permute(A{j},[1,3,2])),[m(j),d(j)*m(j+1)])*reshape(permute(E,[3,4,1,2]) ,[d(j)*m(j+1),m(

j)*n(j)]);
14 C = permute(reshape(Ft ,[m(j),m(j),n(j)]) ,[2,3,1]);

HR{j} = C;
end
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B
A P P E N D I X B - M AT H E M AT I C A L T O O L S

b.1 schmidt decomposition

Theorem

Let

|ψA,B〉 ε HA ⊗HB, |ψA,B〉 = ∑
i,j

ψi,j |i〉A |j〉B . (B.1)

There is always a decomposition

|ψA,B〉 =
m

∑
α

λα |α〉A |α〉B , (B.2)

with m = min (dim (HA) , dim (HB)) , 〈α | α′〉A = 〈α | α′〉B = δαα′ , which means there
is an orthonormal basis of HA and HB.

Proof

ψ can be decomposed via SVD to ψ = UΛV†

⇒ ψi,j =
r

∑
α=1, β=1

UiαΛαβ(V†)βj =
r

∑
α=1

Uiαλα(V†)αj . (B.3)

Inserting this in the state |ψA,B〉 yields

|ψA,B〉 =
dA

∑
i=1

dB

∑
j=1

r

∑
α=1

Uiαλα(V†
αj |i〉A |j〉B)

=
r

∑
α=1

λα

(
dA

∑
i=1

Uiα |i〉A
)

︸ ︷︷ ︸
≡|α〉A

(
dA

∑
j=1

V†
αj |j〉B

)

︸ ︷︷ ︸
≡|α〉B

=
r

∑
α=1

λα |α〉A |α〉B .

(B.4)

Note

1. |α〉A, |α〉B are called Schmidt vectors.

2. m = 1⇔ |ψA,B〉 is separable.

3. m is a measure of entanglement. The larger m is, the more entangled is the state.
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b.2 qr decomposition

SVD is a way to extract all needed information out of a given matrix, but very often
one is only interested in orthogonality of U and the product of SV†. Due to computa-
tion time optimisation, the QR decomposition is a numerically more efficient method,
which for an arbitrary matrix M of dimension (dA × dB) yields a decomposition

M = QR . (B.5)

Q is a left and right orthogonal square (dA × dA) and R is an upper triangular matrix
Rij = 0 for i > j.
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C
A P P E N D I X C - M I S C E L L A N E O U S

c.1 the ising model and its majorana form

Starting from Eq. 3.1 with Pauli matrices instead of spin matrices, the Z2 symmetry is
given by the parity operator

PF = (−1)a†
j aj (C.1)

and the string like fermionic annihilation and creation operators (which correspond
to the Jordan-Wiegener transformation)

aj =

(
∏
k<j

σz
k

)
σ+

j

a†
j =

(
∏
k<j

σx
k

)
σ−j ,

(C.2)

where σ±j are the spin ladder operators

σ±j = σx
j ± iσy

j . (C.3)

They fulfill the (anti-) commutation relation
{

ai, a†
j

}
= δi,j a2

i = 0
{

ai, aj
}
=
{

a†
i , a†

j

}
= 0 . (C.4)

With this, the coupling term reads

Sj,xSj+1,x = −
(

aj − a†
j

) (
aj+1 + a†

j+1

)
. (C.5)

Putting this expressions in 2.47, the result is

H =
L−1

∑
j=1

J
(

aj − a†
j

) (
aj+1 + a†

j+1

)
−

L

∑
j=1

Γ
(

a†
j aj −

1
2

1

)
. (C.6)

The Hamiltonian conserves the number of particles modulo 2 due to terms like ajaj+1.
Majorana operators provide a sufficient way for a description of such systems. They
are introduced via

c2j = −i
(

aj − a†
j

)
,

c2j−1 = aj + a†
j ,

a†
j aj =

1
2
(
1− ic2jc2j−1

)
(C.7)
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and transform the Hamiltonian according to

H =
i
2

(
J

L−1

∑
j=1

c2jc2j+1 + Γ
L

∑
j=1

c2j−1c2j

)
, (C.8)

which yields a diagonisable relation

H =
1
4

c†




0 iΓ

−iΓ 0 iJ

−iJ 0 iΓ

−iΓ 0 iJ

−iJ
. . . . . .
. . .




c . (C.9)

If the transverse field is Γ = 0, the problem becomes simpler, because the 2× 2 blocks
with coupling constant can be diagonalised and the expression is of the form

H =
i
8

c†




0

1
. . .

1

0



⊗
(

0 J

−J 0

)
c , (C.10)

and therefore the eigenvectors to eigenvalue 0 for this matrix can be read off to be
wT

l = (1, 0, 0, 0, . . . ), wT
r = (. . . , 0, 0, 0, 1). For a nonzero field, the eigenvectors to eigen-

value 0 are a bit more complicated and take the form uT
l = (1, 0, Γ

J , 0,
(

Γ
J

)2
, . . . ), uT

r =

(. . . ,
(

Γ
J

)2
, 0, Γ

J , 0, 1), which allows us to expand the boundary modes as

ãl/r = ∑
k

ul/r,kck . (C.11)

This then extends exponentially decaying into the bulk. A graphic visualises the new
form of the Hamiltonian (see Fig. 15). Note that due to the Pauli matrices in the deriva-
tion, for the phase transition in this thesis there is an additional factor two (i.e. Γ/J = 1
for Pauli matrices → Γ/J = 0.5 for spin matrices) and hence the energy contribution
of the boundary modes decays exponentially ∝ (2Γ/J)L. Therefore, given a state to
the two fold degeneracy, the amplitude of ãl/r,k depends heavily on the system length

thus uk ∝ e−k/ξ - with correlation length 1
ξ = log

∣∣∣ 2Γ
J

∣∣∣ - falls off exponentially with the
system size [7]. This also corresponds to the contribution of local states to the total
energy and has the mentioned symmetry breaking consequences for cases such that
2Γ < J for L = 100.
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c.2.1 Ising Model
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Figure 24: The antiferromagnetic case of the Ising model with an even (top) and odd (bottom) number
of sites. The first value for the magnetisation in x direction is Mx

L = 0.00438 which corresponds to a
total value ≈ 1

2 (not exactly because transverse field is nonzero). This is exactly the only lonely spin at
the end of the chain, all others sum up to 0, therefore the order is |↑↓↑↓ . . . ↑↓↑〉.
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Figure 25: Change of the magnetisation along z-axis under change of bond dimension. Rising m, the
numerical solution converges to the analytical with Mx = 0 ∀ Γ

J 6= 0. The curve follows the analytical
solution for PBC, which appears to be a symmetry break for nonzero transverse field.
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Figure 26: Energy convergence vs m at the pure ferromagnetic case Γ = 0. As expected, when the bond
dimension is increased, the accuracy is increased, because more entanglement is considered.
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Figure 27: The entanglement spectrum is as expected doubly degenerated, which is a direct conse-
quence of the AKLT singlet bounds.
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Figure 29: It is noticeable that the bounds of the Heisenberg spin-1 Hamiltonian obey a similar struc-
ture to the one of the AKLT states.
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Figure 30: The effects of the open boundary conditions are clearly visible. For a compareable value,
the energy per side has been recorded with a bond dimension of m = 50 for L = 100 sites, and the
energy per site in the very center has been taken.
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